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ABSTRACT  
Usually, an airborne system (UAV or fighter) carrying sensors localizes itself using a combination of GNSS 
and INS. Nevertheless, particularly in environments near contested territory, GNSS may be jammed or even 
spoofed, forcing the aircraft to revert to dead reckoning using the INS only. Precise INS, however, are both 
large and expensive, limiting their applicability for UAVs which are meant primarily to carry 'payload 
sensors'. 

This work focuses on cost-efficient approaches to enable the usage of sensors - such as SAR or multispectral 
line scanners - on aircrafts, in particular UAVs, which require accurate localization or at least ego-motion 
estimates to process the sensor data. This also is a prerequisite for resilient navigation in GNSS-denied 
environments. 

To enable the use of sensors requiring localization, we are developing a system to localize a UAV or 
estimate its ego-motion in GNSS-denied environments from easily available commercial-of-the-shelf 
components, whose sensor data is fused to provide accurate UAV pose estimates. The idea is to estimate the 
ego-motion above ground by observing the ground passing by as the aircraft flies. To this end, we 
augmented the wing pod of an ultralight aircraft, which already carried a GNSS+INS system as well as a 
SAR payload sensor, with an experiment kit containing a MEMS-IMU as well as a setup of different 
cameras. This setup, which essentially constitutes a visual-inertial-odometry setup, includes a SWIR camera 
to achieve robustness against bad weather conditions, e.g., haze. 

We developed a procedure to calibrate both in- and external camera parameters which achieves sub-pixel 
reprojection accuracy. The ego-motion estimation problem itself is split in two parts: Finding points of 
interest in the images and tracking them across images to establish point correspondences and computing 
the ego-motion from corresponding points. For the former, we look for points with a strong “cornerness” 
and find their corresponding points in other images by computing the optical flow between pairs of images. 
We then compute the ego-motion by solving for the aircraft poses and velocities at the image acquisition 
time points, which maximize the likelihood of the point measurements. Since the cameras’ frame rates are 
much lower than the measurement frequency of the MEMS-IMU, we coalesce all IMU measurements into 
pose-and-velocity-deltas between two image acquisitions, which in turn are used as measurements in the 
maximum likelihood estimator. 

To put our system to a test, we conducted a flight campaign, where we recorded data from our sensors over 
various types of ground, as well as the reference trajectory measured by the GNSS+INS system. The relative 
consecutive poses as estimated by our system deviate only centimeters from the reference trajectory. The 
MEMS-IMU data substantially increases robustness of our ego-motion estimate, and as a bonus, even using 
lower-resolution SWIR images, SAR image formation was satisfactory under benign flight patterns. 



Resilient Navigation with Multi-Sensor Data Fusion in GNSS-Denied Environment      

1 - 2 STO-MP-SET-312 

 

 

1 INTRODUCTION 

Measurements of multi-spectral and multi-static sensors are important data sources to establish situational 
awareness. Typically, such sensors are carried by flying platforms, for instance, depending on the specific 
application, satellites, aircrafts or unmanned aerial vehicles (UAVs). Sensor carrying platforms need to 
localize themselves, both to navigate to and from the scenes to be observed and to make sense of the 
measurements recorded by the sensors. For instance, to form an image using the data recorded by a synthetic 
aperture radar (SAR), the ego-motion of the sensor and thus the platform at measurement time must be 
known. Aircrafts and UAVs usually localize themselves using a combination of an inertial navigation system 
(INS) and satellite positioning. A typical setup of an airplane carrying payload sensor as well as auxiliary 
navigation hardware in a pod below its left wing is displayed in Figure 1-1. The inside of the pod is shown in 
Figure 1-2 on the left, where you see the SAR pointing downward as well as the navigation hardware. 

 

Figure 1-1: Plane carrying the payload sensor and auxiliary navigation electronics in a pod 
below its left wing. (© Fraunhofer FHR) 

 

Figure 1-2: Peek inside the pod mounted below the airplane's wing. Left: Baseline with payload 
sensor (SAR) and auxiliary INS+GNSS. Right: Pod augmented with optical navigation hardware. 
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Satellite positioning, however, may be jammed or even spoofed, particularly over contested territory, forcing 
the airplane to revert to dead-reckoning using its inertial navigation system only. Depending on the precision 
of the INS, navigation without satellite positioning becomes impossible quickly, and the payload sensor’s 
measurements are rendered useless, because without an accurate ego-motion estimate, which is the 
succession of the plane’s poses, the measurements cannot be processed to form images. Additionally, precise 
INS are also heavy, large, and expensive, and thus unattractive to be used on, for instance, a smaller UAV.  

The primary objective of this study was to demonstrate a different, cost-effective approach for estimating the 
ego-motion, such that the payload sensor’s data, in this case SAR, can still be used even if satellite 
positioning is not available. For this, we substituted cameras for satellite positioning, i.e., by observing the 
ground passing by below as the plane flies, and to estimate the plane’s ego-motion from these observations. 
This idea may later be extended to use geo-referenced images acquired prior to the flight, for instance by 
satellites, to achieve absolute positioning instead of visual-inertial odometry only. 

This paper is organized as follows. Section 2 explores the experiment kit in more detail in subsection 2.1 
before it describes our approach to calibrate the optical ego-motion estimation hardware in subsection 2.2. 
Section 3 covers the procedure we implemented to obtain an accurate ego-motion estimate from imagery of 
the ground. Section 4 covers the flight campaign as well as quantitative results. Section 4 also has a 
comparison of SAR images processed using data from the original navigation system with images using the 
ego-motion estimates derived from our visual-inertial odometry approach. At the end, section 5 concludes 
the paper along with an outlook on work in the near future. 

2 EXPERIMENT KIT  AND CALIBRATION 

2.1 Experiment Kit 
The experiment kit mounted in the wing pod is displayed in right half of Figure 1-2. In addition to the 
payload sensor and the original INS, it includes a MEMS IMU (Inertial Labs AHRS-II-P), four panchromatic 
cameras (The Imaging Source DMK 38uX304, 4096x3000 pixel), and a SWIR camera (Xenics BOBCAT, 
640x512 pixel). Two of the panchromatic cameras each had a 75 mm lens and were about 60 cm apart, 
forming a small stereo pair. The other two panchromatic cameras had 35 mm lenses; one was used with only 
a quarter of the resolution to enable image acquisition at 30 Hz. The other panchromatic cameras acquired 
images at 10 Hz. At the target flight altitude of 300-400 m, each camera of the stereo pair had a ground 
sampling distance of about 1.5 cm, the other panchromatic cameras of 3 cm and 6 cm, respectively. The 
SWIR camera used a 75-mm-lens achieving 8 cm GSD at 300 m altitude with a frame rate of 20 Hz. All 
cameras were triggered using the PPS signal of the GPS receiver of the original navigation system. 

2.2 Calibration 
The camera calibration is divided into two parts: the internal and the external camera parameters. The 
internal parameters used in our system are the focal length, the position of the camera centre, as well as the 
radial distortion. The external parameters of each camera are its pose, which is its orientation and position, 
relative to the origin of the pod. The usual approach to determine such parameters is to set up a scene with 
known properties. Given the ideal values of the calibration parameters, it is then possible to compute the 
properties of the scene. The process of calibration is then to compute the scene properties using the best 
guess of the parameters, then to take actual images of the scene and optimize the parameters until the 
computed and observed properties coincide as well as possible. 
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The calibration scene for our system uses planar patterns [2] as displayed in Figure 2-1. The essential 
components of the calibration scene are calibration plates; Figure 2-1 shows four of them. Each calibration 
plate has in each of its corner a marker encoding the unique identifier of the plate. 

 

Figure 2-1: Calibration scene with calibration plates with a known grid of circles. Each plate has 
markers in its corners – example magnified in red circle – encoding the corresponding plate 

identifier. To take actual images, the pod is moved on a camera in front of the calibration plates. 

Since the coordinates on the plates are known with respect to the corresponding plate’s upper-left corner, we 
identify each scene point corresponding to a printed circle by ApAk, which represents the coordinate in the 3-
dimensional scene of the k’th point on plate A relative to the top-left corner of plate A. Using the pose – the 
external parameters – of the j’th camera relative to the pod, PodTCj, the camera matrix and the distortion 
coefficient – the internal camera parameters – of the j’th camera, Kj and kj, we can compute the point IjpAk, 
where the k’th point on plate A appears in the picture Ij taken by camera Cj while the pod and plate A are at 
poses WTPod and WTA, respectively, using eq. (1). 

 

(1) 

In eq. (1), we use homogeneous coordinates, e.g. a point in 3-dimensional space is represented by 4-element 
vectors, p = w [x y z 1]T, with non-zero w and coordinate transforms are packed into 4x4 matrices. The 
distort function in eq. (2) projects a point on an image plane applying radial distortion using OpenCV’s 
distortion model [1] with only the first coefficient. 

 

with 
 

and 
 

(2) 

To do the computation, the poses of the pod as well as the plates need to be known at the time when the 
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respective picture is taken. Instead of measuring these poses somehow, we add them to the calibration 
problem. This makes the calibration computationally harder, however, since pictures of the calibration scene 
are taken while moving the pod on a cart in front of the calibration plates, which are not moved, this adds 
only (#plates + N) pose variables to the problem, where N is the number of pod poses from where pictures 
are taken. A typical picture of a calibration scene is shown in Figure 2-2. Since the poses of the plates do not 
have to be known in advance, we are essentially free to place the plates anywhere we want, however, we 
make sure to put the plates such they are not all co-planar and that the calibration images are taken from 
different orientations to avoid degeneracies. The differences between positions of the computed images of 
the calibration points and the detected images after the camera calibration completed is written next to the 
points. The differences are well below one pixel, usually below 0.5 pixel. 

 

Figure 2-2: Picture taken during calibration. Difference between detected and computed images 
of the calibration points are written next to each point in green. 

3 EGO-MOTION ESTIMATION 

With the calibration in place, the cameras can now be used to determine the ego-motion of the platform 
carrying the sensors. The task is similar to the camera calibration task, i.e., the measurement model will 
almost be like eq. (1), except, of course, that there will be no calibration plates with points on them. Instead 
the cameras will take pictures of the scene below on ground. So we interpret the scene as a very dense set of 
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points and “taking a picture with a camera” as computing the image under the camera’s projection function 
of each 3D scene point in the field of view of the camera. The first task of determining the ego-motion is to 
find out which images of points in the pictures taken by the cameras from different platform poses are 
images of the same 3D-point in the scene. 

3.1 Corresponding Images of Scene Points 
To establish the correspondences of images of 3D scene points across two different pictures, we compute the 
optical flow between those pictures. Essentially, the information contained in the optical flow between two 
pictures is where an image of a 3D scene point moved from one picture to the other. So with the coordinates 
of a point-image in the first picture and the optical flow between two pictures, the coordinates of the point-
image of the same scene point in the second picture can be computed. An example of these displacements is 
drawn in Figure 3-1. 

  

Figure 3-1: Optical flow between two pictures. Arrows over the right picture indicate where 
images of the same scene points are estimated to appear in the left image. 

The estimation of the optical flow can fail for a number of reasons. The two pictures may be taken by 
different cameras from different poses, so the sets of scene points in the respective fields of view are 
different; for some point-images in the first picture, there simply are now corresponding images in the other 
picture. This happens near the boundaries of the pictures. Images of neighbouring scene points may also look 
alike such that it is impossible to tell one from the other. This happens in regions with very little structure, 
for instance in regions picturing a flat surface, such as a lake. To avoid picking spurious correspondences 
from these failure-cases for the ego-motion estimator, the boundaries of the pictures are ignored and only 
point-images whose immediate neighbourhood has a sufficiently high “cornerness” are picked. Additionally, 
a difference measure of the immediate neighbourhoods of corresponding point-images is computed and used 
to remove false correspondences. 

Using the optical flow, we compute point correspondences for both pictures taken at the same time by 
different cameras as well as pictures taken by the same camera at consecutive image acquisition times. The 
former enables the triangulation of the corresponding scene points. The latter enables the computation of 
consecutive plane poses using the triangulated scene points, completing the data necessary to compute the 
ego-motion of the plane. 

3.2 Ego-Motion: Successive Poses 
From the image points and their correspondences, we estimate the successive poses, i.e. the ego-motion, of 
the plane. To do so, we remove the poses of the calibration plates from eq. (1), to obtain a measurement 
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model in eq. (3) for arbitrary scene points, each of which is assigned an identifier ‘id’ according to its scene 
point correspondence. We also add the index k both to the image Ij,k and the pose WTPod,k to denote the image 
of camera j taken at time tk and the pose of the pod at the same time tk, respectively. 

 

(3) 

Denoting the position where the image of the point with the corresponding id has been detected in Ij,k by j,kzid, 
the (squared) projection error of an estimate of the pose WTPod,k with respect to that point is: 

 

(4) 

In eq. (4) I{visible(j,k,id)} is 1 if the point with the identifier “id” is visible in the picture taken by camera j 
from pose k, otherwise it is 0. ΣI is the covariance of the image coordinates to normalize the norm of the 
error, i.e. ||x||2Σ=xTΣ-1x. Since the camera setup for our experiment includes a stereo pair, eq. (4) alone is 
theoretically sufficient to estimate the pod’s poses. From the images of a point taken at the same time by two 
different cameras we can triangulate the 3d-coordinates of the point in the scene relative to the cameras; from 
images of a few triangulated points taken at different times, e.g. tk and tk+1, we could then estimate the 
relative pod pose Pod,kTPod,k+1 between two points in time. Defining the coordinate system of the scene, W, to 
be aligned with the first pose of the pod, i.e. W=Pod,0, this would theoretically yield the ego-motion we are 
looking for. Due to even small measurement and calibration errors and a very small distance between the 
cameras of the stereo pair, such an ego-motion estimate would be very inaccurate. This can be improved by 
exploiting that successive plane (and thus pod) poses are clearly correlated. 

To make this correlation explicit, we augment the state of the plane at some time tk to not only include it’s 
pose, WTPod,k, but also its velocity, Wvk. To correlate successive poses, we assume that the plane’s orientation 
stays unchanged except for a random, Gaussian-distributed angular velocity with mean zero, and that the 
plane’s velocity remains unchanged except for a random, Gaussian-distributed zero-mean acceleration. For 
the position and velocity of the plane at two consecutive points in time, tk and tk+1, this means that D(k) in eq. 
(5) is zero on average with variance Σv, where Δtk=tk+1-tk.  

 

(5) 

Σv is obtained by noticing that the deviation of velocity and position from a linear motion is due to 
integrating a Gaussian random acceleration with zero mean and some variance over Δtk. In eq. (6) we treat 
each of the three spatial dimensions separately and expand the 2x2-covariance of V(Δtk) to the 6x6-matrix Σv 
by taking the Kronecker product with the 3x3-identity, i.e. ⊗I3.  

 

(6) 

Instead of using random variables with zero mean to model the motion between subsequent poses, the 
measurements of the MEMS IMU may be used. The IMU measures changes of the state of the plane: the 
angular velocity – the rate of change of orientation – and the linear acceleration – the rate of change of 
velocity and by integration position. We represent such a state change between tk-1 and tk as 

, where R, p, and v are the change in orientation, position and velocity, 
respectively. With slight abuse of notation, R is a rotation matrix rotating vectors from the pose at tk to the 
pose of tk-1. Such a state change is built incrementally from IMU measurements, starting from the “change” 
between two identical states, which is just kΔk = [I3 0 0], using the model function g: 
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(7) 

In eq. (7), aj and ωj the linear acceleration and angular velocity from the MEMS IMU, Δt the duration 
between two IMU samples. The IMU samples accumulated using eq. (7) between two consecutive states are 
approximately the difference between those states except for the lack of gravity, which is: 

 

(8) 

In eq. (8) WRk, Wpk, and Wvk are the state, i.e. orientation, position, and velocity at time tk. Since the 
accelerometer of an IMU cannot measure gravity, e.g. an accelerometer in free fall measures zero 
acceleration although it is obviously accelerating with the gravitational acceleration, there is a “minus 
gravity” offset between the actual acceleration and the accelerometer measurement. This offset manifests 
itself in the difference between the actual state difference of eq. (8) and the integration of the IMU 
measurements in eq. (7): 

 

(9) 

In eq. (9), k-1g is the gravitational acceleration in the local reference frame at time tk-1. iRj, 
ipj, 

ivj are the 
orientation, position and velocity integrated from the measurements between times tk-1 and tk. The middle 
equality only holds approximately, most importantly due to measurement noise. The corresponding 
normalized measurement error for the integrated IMU measurements between tk and tk-1 is thus 

 
(10) 

The covariance ΣΔ to normalize the measurement error is obtained by initializing it to zero and propagating it 
and the covariances of the angular velocity and acceleration measurements through the measurement model 
function, g, of eq. (7), by linearizing g at the respective values for Δ, ω and a. 

Depending on how successive poses are to be linked – using the zero-mean-white-noise model or integrated 
IMU measurements – there are two different functions quantifying the error of an ego-motion estimate. 
Minimizing either of those provides the best estimate given the corresponding modelling assumptions and 
sensor data, respectively. 

 

or 

 

(11) 
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4 FLIGHT CAMPAIGN AND RESULTS 

To determine the ego-motion of plane carrying the experiment kit (see sect. 2.1 and the right half of Figure 
1-2), we tested optimizing both the left and right cost functions of eqs. (11), e.g. without and with 
measurements from the MEMS IMU. We did that using data acquired during a flight campaign conducted 
over three days, during which the experiment kit was flown mounted on the ultralight plane displayed in 
Figure 1-1. The flight tracks passed different types of ground, e.g. agricultural fields as well as suburban 
areas. The acquired data includes, in addition to the camera images, angular velocity and acceleration 
measurements taken by the MEMS IMU as well as trajectory information from the original INS+GNSS 
solution, which we use as the reference to compare our ego-motion estimators to. The tracks themselves 
were straight-ahead flight with one exception, where the plane flew a succession of left and right turns to 
produce a trajectory which is potentially more challenging to estimate than a straight one. 

One of the primary motivations for this work was to enable the usage of measurement of a payload sensor 
without GNSS, for instance the formation of images of measurements of a synthetic aperture radar (SAR). 
So in addition to the navigation reference and experiment hardware, the plane carried a SAR which was used 
during the flight campaign to record data while flying the straight-ahead tracks.  

4.1 Robustness 
As expected, the ego-motion estimator using MEMS IMU data turned out to be more robust than the 
estimator using the zero-mean-white-noise assumption for the acceleration and angular velocity. One 
example of the robustness difference is the translation sequence plotted in Figure 4-1. For the first half of the 
sequence, the position estimates (blue) of both the estimator not using IMU data (left) and the estimator 
using IMU data (right) yield plausible results. Both estimators track the reference fairly well until the 
estimate using only the zero-mean-white-noise assumption for the motion between two consecutive positions 
collapses. This happens when the estimator introduces a relatively large error, for instance due to wrong 
point-image to world-point correspondences, from which it does not recover. The estimator using IMU data 
to link consecutive poses is more robust against such errors, since, for instance, sudden orientation errors 
would be grossly incompatible with the angular velocity measurements. 

  

Figure 4-1: Translation component (blue) of ego-motion estimates obtained from the same data. 
Left: From camera images without IMU data using white-noise-acceleration. Right: From camera 
images with MEMS-IMU data. The translation from the IGI IMU+GNSS is drawn red for reference. 
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Figure 4-2: Translation components of the plane's trajectory of 20 seconds of flight along the 
track including turns plotted on a corresponding Google Satellite image. Blue: Positions taken 
from the reference data. Yellow: Positions of the ego-motion estimate obtained using camera 

imagery and MEMS IMU measurements. 

4.2 Ego-Motion Accuracy 
To judge the accuracy of the estimator, we compared ego-motion estimates against the output of the IGI 
IMU+GNSS, which we used as reference data. Figure 4-2 shows the position estimate of 20 seconds worth 
of flight drawn on to a Google Satellite image of the corresponding region. The estimate using cameras of 
our experiment kit and MEMS IMU data, plotted in yellow, follows the reference obtained by the IGI 
INS+GNSS fairly accurately but, since the sensor data provide no absolute position information, can be seen 
to slowly drift away from the reference positions at the end of the plot on the bottom right. 

Figure 4-2 shows results qualitatively. To evaluate the estimator more quantitatively, for a short period of 
flight from the flight campaign, both the reference data (blue) as well as the corresponding ego-motion 
estimate (green) obtained from MEMS IMU measurements and SWIR camera images taken at 20 Hz are 
plotted in Figure 4-3. 

The top row of Figure 4-3 shows the position estimate, the middle row the velocity estimate and the bottom 
row the estimate of the orientation. The latter agrees very well to the reference data taken by the IGI system, 
as do the latitude and longitude estimates. There are, however, periods during which the estimator introduces 
errors to the altitude, as can be seen in the top-left plot of Figure 4-3, from which the estimator does not 
recover. 

To process sensor data of payload sensors, e.g. to form images of data of a SAR carried by the plane, the 
absolute position of the plane is not that important, however, the accuracy of the relative motion of the plane 
during the SAR data acquisition is crucial for the resolution of the resulting SAR images. The relative 
orientations and positions, i.e., their change between two image acquisition time points, recorded during the 
more challenging track including turns, which is also shown in Figure 4-2, are plotted in Figure 4-4. The plot 
of the reference data is drawn using a dashed line. As we have already seen in Figure 4-3, the orientation is 
very accurate; the plots for the reference data are only visible for the translation components in the bottom-
left part of Figure 4-4. The differences between the reference data and the ego-motion estimate are plotted in 
the right half of Figure 4-4: The difference of the rotation is typically below 0.01 degrees, while the 
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Figure 4-3: Excerpt of trajectory data of the flight campaign. Green: Estimate using MEMS IMU 
data and images of the SWIR camera captured at 20 Hz. Blue: Reference data of the IGI 

INS+GNSS. 

  

Figure 4-4: Left: Relative orientation and position around and along, respectively, the plane’s x 
(red), y (green), and z (blue) axes, using the INS+GNSS reference (dashed) and ego-motion 

estimate from MEMS IMU measurements and SWIR images at 10 Hz (solid). Right: Difference 
between the reference and the ego-motion estimate. 

translation difference is mostly below 10 cm. The translation error also includes peculiar, regularly spaced 
spikes. These do not come from the data acquired by our ego-motion estimator. Instead, those sudden 
changes occur in the position data of the reference system and we suspect that they appear when the GNSS 
reference system integrates an absolute position measurement. 

During the flight campaign, we evaluated the relative poses of four different tracks, named A02, B01, D01, 
and D03, with different camera configurations, including using one SWIR camera and VIS cameras 
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including the stereo pair. The results are summarized in Table 4-1. As expected due to the lower resolution 
and the lack of a stereo pair, the translation results are worse for the SWIR camera (about 8 cm) compared to 
the VIS cameras (about 3 cm to 5 cm). Interestingly, the rotation errors appear to be better for the SWIR 
camera (about 0.01 degrees) compared to the results achieved by the VIS cameras (about 0.015 to 0.025 
degrees). Our current guess as to why that is the case is that the estimator weighs the rotation information 
from the point correspondences less for the SWIR than for the VIS cameras. For the SWIR camera there are 
less correspondences and each pixel also covers a larger area on ground, while two of the three rotational 
degrees of freedom are already observable for absolute orientations using the gyro-/accelerometer pair and, 
obviously, for relative orientations by the gyrometer alone. 

Table 4-1: Comparison of VIS and SWIR with 10 Hz images each over various tracks. Numbers 
are the root-mean-squared differences with respect to the reference data of the IGI INS+GNSS. 

RMS \ Track A02 B01 (21 s) D01 D03 

Rotation [deg] (SWIR) 0.013 0.008 0.010 0.013 

Translation [m] (SWIR) 0.078 0.083 0.084 0.076 

Rotation [deg] (VIS+Stereo) 0.014 0.027 0.020 0.026 

Translation [m] (VIS+Stereo) 0.029 0.033 0.049 0.051 

 

4.3 SAR Image Processing 
The quality of the derived navigational data shall be further evaluated by the ability to process high 
resolution SAR images of the scene. The airborne FMCW SAR sensor used in the flight campaign operates 
at Ka-band at 35 GHz with a bandwidth of 1.5 GHz that results in a theoretical resolution of 10 cm. The raw 
data was processed with a time-domain backprojection approach on a georeferenced flat-plane earth model, 
see [3] and [4], with a pixel spacing of 3 cm. For comparison, the synchronized radar raw data was each 
processed using the calculated track data from the fiber optic gyroscope and the proposed ego-motion 
estimation by camera and SWIR data. 

Results of the campaign are presented in Figure 4-5 that show an area in the vicinity of the German town 
Ochtendung and Figure 4-6 showing an area close to Miesenheim. The SAR images demonstrate that Ka-
band data can be focused with high resolution by the proposed methods under benign conditions in linear 
flight mode. Regions with more challenging flight patterns like high drift or roll angles show slight 
defocusing effects compared to very high-quality IGI INS+GNSS reference data derived from laser gyros, 
see Figure 4-5 (b)-(d). Yet, objects in these areas are still recognizable and the deterioration is usually 
restricted to small areas. 
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Figure 4-5: SAR image result by post-processing the radar raw data and the navigational data 
derived with different GPS/INS sensors. (a) Full scene processed with proposed camera ego 
motion estimation. (b) Zoom on smaller region with more challenging flight conditions. SAR 

image focused with camera tracking. (c) SAR image focused with SWIR tracking (d) SAR image 
focused with reference data (e) Zoom on field with corner reflector and road. Processed with 

camera tracking. (f) Processed with reference data. 

The experiments demonstrate that objects such as roads, different field vegetation, buildings, parked 
vehicles, tracks in the field and even floodlight masts (see Figure 4-6 (b)-(c)) can be focused with only minor 
deterioration. The obtained resolution was further evaluated by corner reflectors positioned in the scene that 
serve as point targets. Analysis of the achieved ground resolution is presented in Table 4-2, which shows the 
mean point target response and resolution of 3 corner reflectors in the scenes. The maximum amplitude of 
the focused point target is 4-6 dB below the laser gyro standard while the resolution in azimuth is only 
slightly deteriorated from 10.9 cm to 14.5 cm or 17.8 cm, respectively. 
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Figure 4-6: SAR image result by postprocessing the radar raw data and the navigational data 
derived with different GPS/INS sensors. (a) Full scene processed with proposed camera ego 
motion estimation. (b) Zoom on a floodlight in a stadium focused with camera tracking. (c) 
Focused with reference data. (d) Zoom on a building processed with camera tracking. (e) 

Processed with reference data. 

Table 4-2: Comparison of maximum point target amplitude, range- and azimuth resolution with 
SAR data processed by proposed ego motion estimation and reference data. 

 Max Point Target 
Amplitude [dB] 

Resolution Range [cm] Resolution Azimuth 
[cm] 

Camera Ego Motion 13.23  11,4 17,8 

SWIR Ego Motion 15,6 10,7 14,5 

Reference Data 19,2  10,5 10,9 
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5 CONCLUSION 

Our results clearly show that SAR image processing is possible using camera-based ego-motion estimates, 
even using infrared images, without GNSS and with completely automatic positioning feature extraction 
from images. Under benign flight conditions SAR images can be focused with high resolution. 

Under more challenging flight conditions such as high drift or roll angles, the quality differences to SAR 
images formed using the ego-motion information from the INS+GNSS reference system become more 
noticeable. Additionally, the ego-motion estimate from camera images and MEMS IMU measurements drifts 
with respect to the GNSS reference, since, in contrast to GNSS, there is no absolute position reference in the 
images. 

Drift may be reduced by adding loop closures to the camera measurements, i.e. re-recognizing ground 
features when they are passed a second time. This obviously works only if there actually are loops in the 
plane’s trajectory. Additionally, the extraction of points from images is not necessarily limited to images 
captured by the cameras on the plane, although those were the only ones we looked at in the scope of this 
work. Adding geo-referenced images, for instance images acquired by satellites, to the estimator would 
allow absolute positioning without GNSS and is a topic of future research. 
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